Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56

by

Richard G. Allen
Utah State University
Logan, Utah, USA

Luis S. Pereira
Instituto Superior de Agronomia
Lisbon, Portugal

Dirk Raes
Katholieke Universiteit Leuven
Leuven, Belgium

Martin Smith
Water Resources, Development and Management Service
FAO

FAO - Food and Agriculture Organization of the United Nations
Rome, 1998

The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Table of Contents

Preface

Acknowledgements

List of principal symbols and acronyms

Chapter 1 - Introduction to evapotranspiration

Evapotranspiration process

Evaporation
Transpiration
Evapotranspiration (ET)

Units
Factors affecting evapotranspiration

Weather parameters
Crop factors
Management and environmental conditions

Evapotranspiration concepts
Reference crop evapotranspiration (ET$_o$)
Crop evapotranspiration under standard conditions (ET$_c$
Crop evapotranspiration under non-standard conditions (ET$_c$ adj)

Determining evapotranspiration

ET measurement
ET computed from meteorological data
ET estimated from pan evaporation

Part A - Reference evapotranspiration (ET$_o$)

Chapter 2 - FAO Penman-Monteith equation

Need for a standard ET$_o$ method
Formulation of the Penman-Monteith equation

Penman-Monteith equation
Aerodynamic resistance (r$_a$)
(Bulk) surface resistance (r$_s$)

Reference surface
FAO Penman-Monteith equation

Equation
Data
Missing climatic data

Chapter 3 - Meteorological data

Meteorological factors determining ET

Solar radiation
Air temperature
Air humidity
Wind speed

Atmospheric parameters

Atmospheric pressure (P)
Latent heat of vaporization (λ)
Psychrometric constant (γ)

Air temperature
Air humidity

Concepts
Measurement
Calculation procedures
Radiation

Concepts
Units
Measurement
Calculation procedures

Wind speed

Measurement
Wind profile relationship

Climatic data acquisition

Weather stations
Agroclimatic monthly databases

Estimating missing climatic data

Estimating missing humidity data
Estimating missing radiation data
Missing wind speed data

Minimum data requirements

An alternative equation for ET_0 when weather data are missing

Chapter 4 - Determination of ET_0

Penman-Monteith equation

Calculation procedure
ET_0 calculated with different time steps

Calculation procedures with missing data
Pan evaporation method

Pan evaporation
Pan coefficient (K_p)

Part B - Crop evapotranspiration under standard conditions

Chapter 5 - Introduction to crop evapotranspiration (ET_c)

Calculation procedures

Direct calculation
Crop coefficient approach

Factors determining the crop coefficient
Crop type
Climate
Soil evaporation
Crop growth stages

Crop evapotranspiration (ET\(_c\))

Single and dual crop coefficient approaches
Crop coefficient curve

Flow chart of the calculations

Chapter 6 - ET\(_c\) - Single crop coefficient (K\(_c\))

Length of growth stages
Crop coefficients

Tabulated K\(_c\) values
Crop coefficient for the initial stage (K\(_c\)\(_{ini}\))
Crop coefficient for the mid-season stage (K\(_c\)\(_{mid}\))
Crop coefficient for the end of the late season stage (K\(_c\)\(_{end}\))

Construction of the K\(_c\) curve

Annual crops
K\(_c\) curves for forage crops
Fruit trees

Calculating ET\(_c\)

Graphical determination of K\(_c\)
Numerical determination of K\(_c\)

Alfalfa-based crop coefficients
Transferability of previous K\(_c\) values

Chapter 7 - ET\(_c\) - Dual crop coefficient (K\(_c\) = K\(_c\)_b + K\(_c\))

Transpiration component (K\(_c\)_b ET\(_o\))

Basal crop coefficient (K\(_c\)_b)
Determination of daily K\(_c\)_b values

Evaporation component (K\(_c\) ET\(_o\))

Calculation procedure
Upper limit K\(_c\)\(_{max}\)
Soil evaporation reduction coefficient (K\(_r\))
Exposed and wetted soil fraction (f\(_{ew}\))
Daily calculation of K\(_c\)
Calculating ET_c

Part C - Crop evapotranspiration under non-standard conditions

Chapter 8 - ET_c under soil water stress conditions

Soil water availability

Total available water (TAW)
Readily available water (RAW)

Water stress coefficient (K_s)

Soil water balance

Forecasting or allocating irrigations
Effects of soil salinity
Yield-salinity relationship
Yield-moisture stress relationship
Combined salinity-ET reduction relationship

No water stress ($D_r < \text{RAW}$)
With water stress ($D_r > \text{RAW}$)

Application

Chapter 9 - ET_c for natural, non-typical and non-pristine vegetation

Calculation approach

Initial growth stage
Mid and late season stages
Water stress conditions

Mid-season stage - Adjustment for sparse vegetation

Adjustment from simple field observations
Estimation of $K_{cb\mid\text{mid}}$ from Leaf Area Index (LAI)
Estimation of $K_{cb\mid\text{mid}}$ from effective ground cover (f_{eff})
Estimation of $K_{cb\mid\text{full}}$
Conclusion

Mid-season stage - Adjustment for stomatal control
Late season stage
Estimating $\text{ET}_{c\text{ adj}}$ using crop yields

Chapter 10 - ET_c under various management practices

Effects of surface mulches

Plastic mulches
Organic mulches
Intercropping

Contiguous vegetation
Overlapping vegetation
Border crops

Small areas of vegetation

Areas surrounded by vegetation having similar roughness and moisture conditions
Clothesline and oasis effects

Management induced environmental stress

Alfalfa seed
Cotton
Sugar beets
Coffee
Tea
Olives

Chapter 11 - \(\text{ET}_c \) during non-growing periods

Types of surface conditions

Bare soil
Surface covered with dead vegetation
Surface covered with live vegetation
Frozen or snow covered surfaces

Annex 1. Units and symbols

Annex 2. Meteorological tables

Annex 3. Background on physical parameters used in evapotranspiration computations

Annex 4. Statistical analysis of weather data sets

Annex 5. Measuring and assessing integrity of weather data

Annex 6. Correction of weather data observed in non-reference weather sites to compute \(\text{ET}_c \)

Annex 7. Background and computations for \(K_c \) for the initial stage for annual crops

Annex 8. Calculation example for applying the dual \(K_c \) procedure in irrigation scheduling

Bibliography
A. Basic concepts and definitions
B. ET equations
C. ET and weather measurement
D. Parameters in ET equations
E. Crop parameters in PM equation
F. Analysis of weather and ET data
G. Crop evapotranspiration
H. Crop coefficients
I. Lengths of crop growth stages
J. Effects of soil mulches
K. Non-growing season evapotranspiration
L. Soil water holding characteristics
M. Rooting depths
N. Salinity impacts on evapotranspiration
O. Soil evaporation
P. Factors affecting ETc
Q. Soil water balance and irrigation scheduling
R. General

FAO technical papers